
Geometric Sequence (GS) Imaging with Bayesian Smoothing for Optical and
Capacitive Imaging Sensors

Kuntal Sengupta
MERL

201 Broadway, Cambridge, MA 02139

Fatih Porikli
MERL

201 Broadway, Cambridge, MA 02139

Abstract

In this paper, we introduce a novel technique called Geo-
metric Sequence (GS) imaging, specifically for the purpose
of low power and light weight tracking in human computer
interface design. The imaging sensor is programmed to
capture the scene with a train of packets, where each packet
constitutes a few images. The delay or the baseline asso-
ciated with consecutive image pairs in a packet follows a
fixed ratio, as in a geometric sequence. The image pair with
shorter baseline or delay captures fast motion, while the im-
age pair with larger baseline or delay captures slow motion.
Given an image packet, the motion confidence maps com-
puted from the slow and the fast image pairs are fused into
a single map. Next, we use a Bayesian update scheme to
compute the motion hypotheses probability map, given the
information of prior packets. We estimate the motion from
this probability map. The GS imaging system reliably tracks
slow movements as well as fast movements, a feature that is
important in realizing applications such as a touchpad type
system. Compared to continuous imaging with short delay
between consecutive pairs, the GS imaging technique en-
joys several advantages. The overall power consumption
and the CPU load are significantly low. We present results
in the domain of optical camera based human computer in-
terface (HCI) applications, as well as for capacitive finger-
print imaging sensor based touch pad systems.

1. Introduction

Motion estimation from an image sequence is one of the
primary components in a tracking system, specifically de-
signed for vision based human computer interfaces (HCI).
The imaging sensor, optical or otherwise, is now the input
to the HCI system for the purpose of basic mouse/touchpad
type control. Throughout this paper, we will refer to such
mouse/touchpad control tasks as navigation tasks. In navi-
gation tasks, it is important to have an accurate estimation
of the motion, starting from the images captured by the sen-

Figure 1. The timing diagram here illustrates a train of images that
samples the scene densely in time.

sor. For applications such as the fine placement of a cursor
in the screen, accurate estimation of small motion is very
important. On the other hand, for moving quickly from one
part of the screen to the other (specifically in gaming appli-
cations), estimation of fast motion is crucial in realizing a
pleasant user experience.

A straight forward solution to realizing a system that can
reliably capture both fast and slow motion is to image con-
tinuously at a very high frequency. By doing this, we are
always in a position to estimate the fast motion. To compute
the parameters of the slow motion accurately, one needs to
choose image pairs significantly far away in time. This is
illustrated by the timing diagram in Fig. 1. In this example,
images A and B can be used to compute the fast motion.
However, if the object is moving slow, image pairs A and D
could probably be an ideal candidate of choice.

We list the problem of imaging continuously at high fre-
quency below:

• Large power consumption: Imaging sensors (for ex-
ample capacitive fingerprint sensors) that have a high
ratio between ON and IDLE current consumption will
drain excessive power. This is an important factor to
consider when such sensors are integrated in mobile
devices, such as the cell phones and laptops.

• Large data transfer rate: Typically, if the HCI ap-
plication is running in an embedded environment, con-
tinuous imaging as in Fig. 1 would imply transferring
image data to the host processor every T ms.

90978-1-4244-3993-5/09/$25.00 ©2009 IEEE

• Large CPU load: Typically, in gaming applications,
the CPU is primarily busy servicing computationally
expensive computer graphics algorithms, and the CPU
load budgeted for simple navigation tasks is usually
very minimal (typically less than 5 % of the total CPU
load). Imaging every T ms would imply a larger num-
ber of image pairs to correlate. Hence, a large CPU
load needs to be budgeted for the purpose of motion
estimation.

In many HCI tasks, the velocity of the object of interest
is relatively constant, or changes slowly. For this, it may
suffice to sense images as shown in Fig. 2(a). Here two im-
ages are captured with a delay of T between them, and the
pattern is repeated over time. Hence motion measurements
can be made every TL mSec, where TL > T .

(a)

(b)

(c)

Figure 2. Three different ways to sparsely sample the scene in
time.

For very small values of T , the system is ideal for cap-
turing fast motion. When T is relatively large, we have
a system that measures slow motion. However, it cannot
measure fast motion reliably. Other alternate ideas could be
a mix and match of the techniques in Fig. 1 and Fig. 2(a),
where we alternate between fast and slow measurements.
This is illustrated in Fig. 2(b). Alternatively, as in Fig. 2(c),
we could use motion computed between pairs A and B for
fast motion detection and A and C for slow motion com-
putation. The timing diagram in Fig. 2(c) forms the ba-
sis of our geometric sequence (GS) imaging technique that
we will present in the next section. The group of images,
(A,B,C), is formally called as a packet. For TL = T2, the
example in Fig. 2(a) is similar to the example in Fig. 2(c),
where the frame A’ can double up as frame C.

An idea similar to the GS system appears in the patent
disclosure in [1]. The system described in [1] is functional
in millions of biometric cell phones, where the fingerprint
sensor doubles as a touchpad. The paper discussed here is a
significant extension of the GS type system discussed in [1].
The paper here introduces a Bayesian-GS imaging theory.
We need to bear in mind the issues of repeated scene texture
and other non idealities, such as noise and illumination vari-
ation, that can lead to erroneous estimation of velocity. The
theory of motion estimation present in [1] is mainly ad hoc,
and not grounded on strong principles of Bayesian tracking
as presented in this paper. To ensure a smooth estimate of
the velocity profile, we present a method to propagate the
motion likelihood over time. For this, we generate the con-
fidence maps computed from the pairs (A, B) and (B, C),
and combine them to generate an overall motion confidence
map for the packet. We discuss this in Section 3. Next, us-
ing a Bayesian approach, we estimate the smooth motion.
This is discussed in Section 4. This is followed by the ex-
perimental results and the conclusions section.

1.1. Prior work in motion tracking for HCI

Motion estimation for HCI is an actively researched area.
The paper by Moeslund et al [2] describes a comprehensive
survey of computer vision-based human motion capture lit-
erature from the past two decades. The authors provide a
taxonomy of system functionalities, broken down into ini-
tialization, tracking, pose estimation, and recognition. A
similar survey by Gavrila on the analysis and interpretation
of human motion appears in [3]. The system described by
Turk in [4] and the Pfinder system by Wren et al. [5] fol-
lowed by the Spfinder system is perhaps one of the earlier
complete human body tracking system, used for animating
computer generated characters. As for hand based HCI sys-
tems, Palovic et al. [6] provide a comprehensive survey of
hand gesture based input systems. There is a plethora of
vision based hand/finger tracking systems in the literature.
Wu et al. [7] present a method for tracking the 3D posi-
tion of a finger, employing a single camera placed several
meters away from the user. Segen and Kumar describe the
GestureVR system in [8] that uses a stereo pair of calibrated
cameras for tracking hand gesture. Rehg and Kanade in [9]
describe DigitEyes, a model-based hand tracking system.
Unfortunately, none of these works address the issue of low
computational load and low power solutions, suitable for
embedded devices, such as mobile phones. Processing of
every frame is assumed in these HCI systems.

Dealing with multi camera multi frame systems in a me-
thodical way has however appeared in stereo vision and
computational photography literature. In [10], the authors
describe how multiple baseline stereo information can be
fused to deal with problems inherent with scenes with re-
peated patterns or structures. Raskar et al [11] present a

91

coded exposure approach to combine information in multi-
ple images captured with variable exposure time to remove
the blur in an image. Although not relevant to the HCI mo-
tion estimation problem, such concepts of fusing images
taken at different (known) time instances has inspired our
work in this paper.

1.2. Domain of application

The basic theory of GS imaging presented here general-
izes to most motion tracking problems. However, we would
now define the scope of the work presented here. Human
computer interface and gaming applications are growing in
mobile devices such as cell phones and PDAs. Moving the
cursor, scrolling the menu, and navigating in a gaming ap-
plication are some of the application areas that we are ad-
dressing here.

As shown in Fig. 3(a), the camera of the cell phone is
directed towards a relatively planar region in the scene. The
motion of the cell phone with respect to the scene acts as
an input to the device. For simplification purposes, we will
assume pure translation motion in this paper. However, the
theory can be extended for more generalized motion models
to handle rotations, and arbitrary scene geometry.

In Fig. 3(b), we illustrate yet another application of mo-
tion tracking in navigation tasks. Here, the finger is moved
on a 500 dpi capacitive fingerprint sensor, as in a touchpad.
A small 32×32 section of the fingerprint sensor is activated
in the video mode to image the ridge valley pattern. As
shown in the picture, at any time instance, the conductive
layer of the skin acts as one of the plates of the capacitors.
The equipotential lines in this thin plate arrangement fol-
lows the pattern of the ridges and the valleys. The pixel
sensor plate array picks up the ridge/valley pattern of the
equipotential lines, leading to the highly textured images
of a small region of the finger. The ridges and valley pat-
terns in the finger provide sufficient texture variation to per-
form reliable motion computation and tracking, as the finger
moves on the sensor.

In this paper, the theory of GS imaging is limited to the
following assumptions.

• There is only one global motion that the scene under-
goes relative to the camera.

• The motion is purely translational in the x and the y
direction.

2. Geometric Sequence (GS) Imaging: The Ba-
sics

To address the light weight (low CPU load), low power
requirements of the navigation system for HCI, we have de-
signed a novel geometric sequence (GS) imaging technique.

(a)

(b)
Figure 3. Illustration of two typical scenarios where motion track-
ing is required for HCI tasks. In (a), the cell phone is moved with
respect to the world. In (b), the finger is moved on a small capac-
itive fingerprint sensor and we gather a sequence of small 32x32
frames containing ridge/valley patterns.

The GS technique is applicable for optical cameras as well
as for other imaging sensors, like capacitive fingerprint sen-
sors. In this technique, instead of imaging every T ms, we
perform packet imaging, as shown in Fig. 2(c). Here, we
collect an image packet every TL ms. Inside the packet, we
have two image frames with a short time delay T1 between
them , and two frame pairs imaged with long time delay T2

between them. Note that T2 > T1. Fig 2(c) shows three
frames in the packet; A, B, and C, respectively. In prin-
ciple, we are not limited to imaging only three images. It
is possible to image m images in general, where the gap
between the kth and the (k + 1)th image is Tk, and

Tk+1

Tk
= r. (1)

We estimate the fast and the slow motion by correlating
the frame pairs (A, B) and (B, C), respectively. We refer
to the pair (A, B) as the fast pair and the pair (B, C) as
the slow pair.

Next, we introduce the parameters in the imaging system
that would help us in quantifying the performance of the
motion detection scheme. Let vx and vy be the x and the
y components of the velocity of the object in terms of the
image coordinate system. The units of vx and vy are in
pixels per unit time.

The parameters dxf and dyf are the maximum absolute
values of the x and y displacement that we choose to esti-
mate. In other words, given two framesA andB, we wish to

92

Figure 4. An illustration of the velocity range captured by the fast
pair (top) and the slow pair (bottom).

search over all displacement hypothesis in the range shown
below∣∣m̂xf

∣∣ ∈ [−dxf , − (dxf − 1), . . . , − 1, 0, 1, 2, . . . , dxf
]
,

and∣∣∣m̂yf

∣∣∣ ∈ [−dyf , − (dyf − 1), . . . , − 1, 0, 1, 2, . . . , dyf
]
.

Here m̂xf and m̂yf are the estimated x and y compo-
nents of the displacement of the object in the fast frame pair.
For the slow pair, the parameters dxs and dys correspond to
the the maximum absolute displacement values estimated in
the x and the y direction, respectively. Also, m̂xs and m̂ys
are the estimates of the displacement for the slow pair.

Assuming a constant velocity in the image packet, we
observe that

m̂xf = rm̂xs m̂yf = rm̂ys.

We now introduce the notion of the dead zones. Dead
zones are the range of motion values that cannot be mea-
sured by the designed system. For this, we refer to Fig-
ure 4. In this figure, we illustrate the range of motion values
in 1D sensed by the fast pairs. Note that for each value
of mxf , we have a range of velocities that map into that
range. For example, mxf = 0 represents the velocity in the
range [−0.5

T
0.5
T]. Similarly, for an arbitrary value of motion

mxf = a, we sense motion in the range [a−0.5
T

a+0.5
T]. The

maximum velocity in the x and the y direction that can be
measured are

max(vx) =
dxf + 0.5

T
, and max(vy) =

dyf + 0.5

T

respectively.
Similarly, for the slow pairs, the maximum velocity in

the x and the y direction that can be measured are

max(vx) =
dxs + 0.5

rT
, and max(vy) =

dys + 0.5
rT

respectively.
To estimate small motion precisely for fine positioning

applications, we would be using the measurements from the

Figure 5. Sum of Squared Distance (SSD) is computed in the over-
lap region for image pairs A and B.

slow pair, and for fast motion, we use the measurements
from the fast pair. To ensure enough overlap between the
two measurement apparatus, and a smooth transition be-
tween them, we need to have sufficient overlap in the range
of velocities that each apparatus measures. For example, the
rule we follow is that if we measure that m̂xf = 0, we use
the measurement m̂xs. The maximum velocity measured
by the slow pair has to exceed the maximum velocity value
corresponding to the measurement of 0 displacement in the
fast pair. Thus, to avoid dead zones, or in other words, to
have a continuous handover from the slow pairs to the fast
pairs and the vice-versa,

dxs + 0.5
rT

>
0.5
T
.

Simplifying the above equation,

dxs > 0.5r − 0.5.

For dxs = 4, dyf = 4, and r = 4, it is easy to verify that
the above inequality is satisfied.

Given a frame pair, we minimize the sum of the squared
distances (SSD) to compute the displacement estimates.
The fast SSD table has a total of (2dxf + 1) × (2dyf + 1)
entries. As shown in Fig. 5, for a given motion hypothe-
sis between images A and B, we compute the sum of the
squared distance between the overlap region, and normal-
ize it. The displacement hypothesis (m̂xf , m̂yf) with the
minimal value is chosen as the velocity of the object. Alter-
natively, as in [12], the SSD values are related to the proba-
bilities as follows. Thus

P
(
m̂xf = d1, m̂yf = d2

)
∝ e−αSSDf (d1,d2). (2)

For the slow pair (B, C), we compute the SSD table SSDs,
which is of dimension (2dxs + 1)× (2dys + 1).

For each packet, we have two SSD tables, SSDf and
SSDs, respectively. Next, we discuss a way of combining
the SSD tables as a pre processing step to obtaining smooth
estimates of the velocity parameters.

93

3. Combining the SSD Tables for Velocity Esti-
mation

Given a slow and a fast table, the simplest way to obtain
a combined decision is to observe the fast table SSDf ini-
tially. If the entry corresponding to the motion (0, 0) is a
winner (i.e, has the least SSD value), then we observe the
table SSDs. The entry corresponding to the lowest SSD
values in the slow table is declared as the winner. If this is
(mxs, mys), our estimates for the x and the y components
of the velocity are

vx =
mxs

rT
, and vy =

mys

rT
. (3)

In the event that the location (0, 0) in the table SSDf is not
the winner, we record the winning location in this table, say
(mxf ,myf), and vx = mxf/T and vy = myf/T .

However, errors in the SSD computation due to presence
of noise and aliasing due to repeated structures could cause
an erroneous estimate of the motion hypothesis. The effect
of erroneous fast motion computation is most noticeable in
navigation applications. To address this problem, we adopt
a Bayesian smoothing approach. The approach requires an
overall motion likelihood table to be computed for a given
packet. Hence, we need to merge the two SSD tables to
form one table.

Figure 6. Interpolation of the SSD values for the fast table are done
using the nearest (quantized) motion value for which image based
SSD is computed.

As in the previous section, for ease of explanation, we
would be reverting to the 1D case. In Fig. 6, we illustrate the
SSD values interpolated for vx ∈

[
−dxf +0.5

T

dxf +0.5

T

]
, cor-

responding to the fast table. In general, for 2D SSD table,
SSD(vx, vy) = SSDf (round(vx

r), round(vy

r)). This is

the simplest extension of the SSD from a discrete set of ve-
locity values to a continuous set of velocity values. Bilinear
interpolation, as shown in Fig. 7 yields a continuous solu-
tion, and we adopted this for all our experiments. However,
for the ease of illustration, we will continue with the inter-
polation as in Fig. 6.

Figure 7. Bilinear interpolation of the SSD value.

Note that the slow SSD table gives sensible results only
when the object motion is slow. In other words, only
when mxf = 0, the SSDs table can be considered usable.
Merely replacing the values of the SSDs from the slow ta-
ble into their equivalent position in the fast tables would be
incorrect. There is a need to equalize the two tables, before
the slow table can be inserted into the fast table. For this,
each of the SSD values in the slow table are multiplied by a
factor β, where

β =
SSDf (0)

1
|S|
∑mx=d0.5re
mx=d−0.5re SSDs(mx)

. (4)

In the above equation, S corresponds to the set of motion
displacements {−m,−(m − 1), . . . , (m − 1), m}, where
m = d0.5re. In other words, for the overlap region in the
velocity space, the mean SSD of the slow table is equated
to the mean SSD corresponding to the fast table. The fused
SSD table after scaling the slow table is illustrated in Fig. 8.
For a non zero value ofmxf , we use the interpolated version
of the fast SSD table as shown in Fig. 6.

Next, the SSD values are converted to probability tables.
For this, we use Eqn. 2, and rescale the probability table
such that it sums to unity. We have experimented with sev-
eral values of the α parameter.The choice of α = 0.01 has
been used found to be optimal, and has been used for our
experiments.

4. Bayesian Smoothing in GS Imaging System

As mentioned earlier, just relying on the SSD tables to
estimate the velocity parameters could lead to noisy esti-
mates in presence of noise, and for various other reasons,
such as presence of repeated structures in the scene.

94

Figure 8. The overall (fused) SSD table when mxf = 0.

Figure 9. Example of a situation where the SSD computation be-
tween the two frames (shown in square) would lead to an inaccu-
rate estimate of the motion.

We illustrate one such example in Fig. 9. Here, we ob-
serve that the object has repeated picket fence like patterns
in the middle of the scene. When the sensor traverses from
left to right, the random dot patterns in the scene leads to
the correct estimation of the velocity. However, on entering
the ridge like pattern, the motion estimation could easily be
confused between a positive motion in the x direction ver-
sus a negative motion. If we preserved the previous states of
the motion vector, it would be possible to obtain a smooth
estimate.

Assume that we have already estimated the smooth ve-
locity vx(t), where t is an index on the image packet. On
arrival of the t th packet Ot, we compute the SSD table
and the probability table as shown in Eqn. 2. Our Bayesian
update and estimation technique is loosely based on prior
Bayesian tracking techniques in the vision literature. One
such example is the Condensation framework presented by
Isard et al. in [13]. Using Bayes rule and assuming a first

Figure 10. Here we illustrate the first order Markov Model for the
random process vx(t).

order Markov model for the random process vx(t), we have

P (vx(t) = v |Ot, Ot−1, . . . , O1) ∝ P (Ot|vx(t) = v)×

∑
∀v′

P (vx(t) = v|vx(t− 1) = v′)P (vx (t− 1) = v′ |Ot−1, . . . , O1) . (5)

We illustrate the first order Markov process in Fig. 10.
Note that P (Ot|vx(t) = v) is an entry in the probability
table derived in Eqn. 2.

Assuming constant velocity model, and a Gaussian noise
model

vx(t) = vx(t− 1) + n(t).

where n(t) is a Gaussian process, we observe
that the term

∑
∀v′ P (vx(t) = v|vx(t − 1) =

v′)P (vx (t− 1) = v′ |Ot−1, Ot−2, . . . , O1) in Eqn. 5
is a convolution of a Gaussian kernel with the table
P (vx(t− 1) = v|Ot−1, . . . , O1) that was estimated at time
t − 1. In our application, the Gaussian table is assumed to
be a 3×3 matrix G, where

G =

 1 2 1
2 4 2
1 2 1

 .

The recursive algorithm for obtaining the probability ta-
ble corresponding to the velocity hypotheses is as follows:

• Given a motion sensing packet at time t, compute
the probability table P (O(t)|v(t) = v), for v ∈[
−
dxf +0.5

f

T ,
dxf +0.5

f

T

]
using the SSD fusion scheme

and converting the SSD table into the probability map
as in Eqn. 2.

• For t = 0, P (vx(t) = v|O(0)) = P (O(0)|vx(0) = v).

• For t > 0, smooth the estimated probability table from
the previous iteration, P (vx(t−1) = v|Ot−1, . . . , O0)
by convolving it with G.

• Compute the state probability table for the current time
instance by multiplying the table P (O(t)|vx(t) = v)
obtained in step 1 with the smoothed table from step 3,
as shown in Eqn. 5.

95

Figure 11. The synthetic image sequence generated.

The velocity estimate at time t is

vx = arg max
v

P (vx(t) = v|Ot, Ot−1, . . . , O1).

5. Experimental Results
To test the effectiveness of the algorithm, we formulated

a few controlled experiments. We captured a high resolution
picture of the scene, and simulated image frames taken from
a moving (virtual) camera. We did this by cropping smaller
images from the high resolution image and adding noise to
them, as the virtual camera moved. We generated motion
sequences for known velocity values, and benchmarked the
performance of the GS imaging with respect to the ground
truth values. In this experiment, the ratio in GS imaging
is r = 4. Also, T = TL, implying that we took images
of pattern A1B1, A2B2, . . . ; and used (Ai, Bi) as the slow
pair, and (BiAi+1) as the fast pair. The delay between B1

and A2 is 4 times the delay between A1 and B1.

(a) (b)

Figure 12. The plot of the estimated velocity and ground truth ve-
locity vs. time is shown. We plot the X and the Y components in
(a), and in (b), respectively.

In Fig. 11, we show twelve representative images in the
sequence collected. Here, the camera was initially moved
diagonally, with slow motion, and gradually accelerating to
large values, followed by a reversal in direction. Although
our motion model in the previous section assumes constant

velocity model plus noise, we keep up with small accelera-
tion components because of the Gaussian smoothing of the
probability table computed from previous packets. The esti-
mated velocity components in the X and the Y direction are
illustrated in Fig. 12. The ground truth velocity (in red x) is
overlaid on the estimated velocity (in blue o). One can note
that the estimated velocity closely tracks the ground truth
velocity. One interesting thing to note is the jump of the
velocity estimate from 2 to 4. Essentially, when the slow
pairs perceives a motion of more than 2 pixels, the fast pair
also perceives a non zero motion. In our SSD table fusion
scheme, we then disregard the contribution of the slow ta-
ble. Thus, the fast displacement of 1 unit (which is equal
to 4 units in terms of the slow pair) emerges as the winner.
In Fig. 13, we illustrate the results of velocity estimation in

(a) (b)

Figure 13. The estimated/ground truth velocity components in the
X and the Y direction are shown in (a) and (b), respectively for a
sequence collected while the camera undergoes horizontal motion.

the case of pure horizontal motion. Here, the camera under-
went slow as well as fast motion. Note that the system can
estimate slow as well as fast motion reliably.

Next, we present results from the sequence collected
from a capacitive fingerprint sensor. The images captured
are of dimensions 32 × 32, and are of 500 dpi resolution.
The fast pair delay is 1 mSec and the slow pair delay is 4
mSec. For 500 dpi images, this translates to a maximum
speed capture of 20 cm/sec, for dxf = 4. The slowest pair
can capture motion fine motion as small in magnitude as
0.32 cm/sec. The packets are repeated every 30mSec, im-
plying that we have a velocity estimate at approximately 30
Hz, which is frequent enough to move a cursor in a screen.

Figure 14(a) shows four sample image frames, one per
packet, captured by the capacitive sensor as the finger was
moved vertically upwards (a minutiae is pointed out with a
red x). The fused probability maps computed after receiv-
ing a packet is shown in Figure 14(b). The estimated ve-
locity using the Bayesian scheme, versus a simplistic (non
Bayesian) scheme is shown in Fig. 14(c). In the simplistic
scheme, the winner is selected from the fused SSD derived
from the current packet. Note that propagating the probabil-
ity map using the Bayesian framework helps us in obtain-
ing a smooth estimate, and we avoid sudden jumps in the

96

(a) (b) (c)
Figure 14. (a) One image frame from each of the four represen-
tative packets are illustrated here, as the finger moves vertically
upwards. (b) Here we show the motion hypotheses probability
maps estimated after computing the fused SSD table from the ob-
served packet, followed by the Bayesian update. (c)The estimate
of the trajectory using the Bayesian update scheme is shown by the
straight line to the right, and a simple scheme without the Bayesian
update is shown by the line to the left.

velocity profile caused due to repeated ridge valley pattern
(leading to aliasing).

Figure 15. (The trajectory estimates as the finger is swiped in nine
different directions.

In Fig. 15, we plot the tracks computed from the esti-
mated finger motion under nine different situations. Track1
is an estimate of the track for a pure vertical motion, Track
2 is the estimate corresponding to the NorthNorthEast fin-
ger motion, and so on. The motion estimation using the GS

scheme is indeed reliable enough to be used in navigational
application in HCI.

6. Conclusions
In this paper, we present a novel Geometric Sequence

Imaging technique, by imaging with a train of packets com-
prising image pairs to capture fast and slow motion. The
technique has been applied on both optical as well as non
optical imaging sensors. Future extensions of this work in-
clude imaging scenes with objects moving around at various
speeds, and tracking each of the detected objects using the
Bayesian tracking framework.

References

[1] J. A. Tykowski, J. W. Neil, and K. Sengupta, Finger Sensing
Device for Navigation and related Methods, Patent Disclosure
WO/2006/044815.
[2] T. B. Moeslund and Erik Granum, ”A Survey of Computer
Vision-Based Human Motion Capture,” Computer Vision and
Image Understanding , vol. 81, no. 3, pp. 231-268, 2001.
[3] D. Gavrila, ”The Visual Analysis of Human Movement: A
Survey,” Computer Vision and Image Understanding,, vol. 73, no.
1, pp. 82-98, 1999.
[4]M. Turk, ”Computer vision in the interface”, Commun. ACM,
vol. 47, no. 1, pp. 60-67, 2004.
[5] C. Wren, A. Azarbayejani, T. Darrell and A. Pentland,
”Pfinder: Real-Time Tracking of the Human Body,” IEEE Trans.
PAMI, vol. 19, no. 7, pp. 780-785, 1997.
[6]V. Pavlovic, R.Sharma and T. S. Huang, ”Visual Interpretation
of Hand Gestures for Human-Computer Interaction: A Review,”
IEEE Trans. PAMI, vol. 19, no. 7, pp. 677-695, 1997.
[7]A.Wu, M. Shah and N. da Vitoria Lobo, ”A Virtual 3D
Blackboard: 3D Finger Tracking Using a Single Camera,”’, Proc.
FG, pp. 536-543, 2000.
[8]J. Segen and S. Kumar, ”Gesture VR: Vision-Based 3D Hand
Interface for Spatial Interaction,” Proc. ACM Multimedia, pp.
455-464, 1998.
[9]J. M. Rehg and T. Kanade, ”Visual Tracking of High DOF Ar-
ticulated Structures: an Application to Human Hand Tracking,”’
Proc. ECCV, pp. 35-46, 1994.
[10]M. Okutomi and T. Kanade, ”A Multiple-Baseline Stereo,”
IEEE Trans. PAMI, vol. 15, no. 4, pp. 353-363, 1993.
[11]R. Raskar, A. K. Agrawal and Jack Tumblin, ”‘Coded
exposure photography: motion deblurring using fluttered shutter,”
ACM Trans. Graph., vol. 25, no. 3, pp. 795-804, 2006.
[12]K. Nickels and S. Hutchinson, ”Estimating uncertainty in
SSD-based feature tracking,” Image and Vision Computing, vol.
20, no. 1, pp. 47-58, 2002.
[13] M. Isard and A. Blake, ”CONDENSATION - Conditional
Density Propagation for Visual Tracking,” International Journal
of Computer Vision, vol. 29, no. 1, pp. 5-28, 1998.

97

